Soil moisture control over autumn season methane flux
نویسنده
چکیده
Introduction Conclusions References
منابع مشابه
Landscape patterns of CH4 fluxes in an alpine tundra ecosystem
We measured CH4 fluxes from three major plant communities characteristic of alpine tundra in the Colorado Front Range. Plant communities in this ecosystem are determined by soil moisture regimes induced by winter snowpack distribution. Spatial patterns of CH4 flux during the snow-free season corresponded roughly with these plant communities. In Carex-dominated meadows, which receive the most mo...
متن کاملPermafrost and Periglacial Processes
The microbial process of methane (CH4) production during the back-freezing of permafrost soils in autumn and the future fate of produced CH4 in the thawing phase of the following spring are not well understood. Long-term CH4 flux studies in the Lena Delta (Siberia) indicate that back-stored CH4 adds to the emission of newly-produced CH4 at the beginning of the vegetation period. Further field a...
متن کاملInterannual variation in seasonal drivers of soil respiration in a semi-arid Rocky Mountain meadow
Semi-arid ecosystems with annual moisture inputs dominated by snowmelt cover much of the western United States, and a better understanding of their seasonal drivers of soil respiration is needed to predict consequences of climatic change on soil CO2 efflux. We assessed the relative importance of temperature, moisture, and plant phenology on soil respiration during seasonal shifts between cold, ...
متن کاملMethane flux in cropland and adjacent riparian buffers with different vegetation covers.
While water quality functions of conservation buffers established adjacent to cropped fields have been widely documented, the relative contribution of these re-established perennial plant systems to greenhouse gases has not been completely documented. In the case of methane (CH(4)), these systems have the potential to serve as sinks of CH(4) or may provide favorable conditions for CH(4) product...
متن کاملElevated CO2 and warming effects on CH4 uptake in a semiarid grassland below optimum soil moisture
[1] Semiarid rangelands are a significant global sink for methane (CH4), but this sink strength may be altered by climate change. Methane uptake is sensitive to soil moisture showing a hump‐shaped relationship with a distinct optimum soil moisture level. Both CO2 and temperature affect soil moisture, but the direction of CH4 uptake response may depend on if the system is below or above the soil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011